Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
نویسنده
چکیده
Three-dimensional (3D) integration of microand nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology. In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world.
منابع مشابه
Micro to Nano – Scaling Packaging Technologies for Future Microsystems
As the development of microelectronics is still driving towards further miniaturization new materials, processes and technologies are crucial for the realization of future cost effective microsystems and components. These future systems will not only consist of SMDs and ICs assembled on a substrate, but will potentially integrate also living cells, organelles, nanocrystals, tubules and other ti...
متن کاملVia-First Inter-Wafer Vertical Interconnects utilizing Wafer-Bonding of Damascene-Patterned Metal/Adhesive Redistribution Layers
Three-dimensional (3D) integration with through-die vias offer improved electrical performance compared to edgeconnected wire bonds in stacked-die assemblies. Monolithic wafer-level 3D integration offers the potential for a high density of micron-sized through-die vias necessary for highest performance of integrated systems. In addition, such wafer-level technologies offer the potential of lowe...
متن کاملReliability of key technologies in 3D integration
3D IC packaging offers miniaturization, high performance, low power dissipation, high density and heterogeneous integration. Through-silicon via (TSV) and bonding technologies are the key technologies of 3D IC, and the corresponding reliability has to be well evaluated and qualified before real production applications. This paper reviews the emerging 3D interconnection technologies in worldwide...
متن کاملTechnologies for 3D Heterogeneous Integration
3D integration is a fast growing field that encompasses different types of technologies. The paper addresses one of the most promising technology which uses Through Silicon Vias (TSV) for interconnecting stacked devices on wafer level to perform high density interconnects with a good electrical performance at the smallest form factor for 3D architectures. Fraunhofer IZM has developed a post fro...
متن کاملPackaging and Interconnect for Micro- and Nano-scale Systems
Packaging and interconnect technologies are critical to the advancement of micro-scale and nano-scale systems. This paper will review some examples of our studies on flip-chip assembly, solder self-assembly, automated tuning and fixing, flexible circuits, atomic layer deposition and liquid crystal polymer for manufacturable and reliable microelectromechanical systems (MEMS). In addition, we wil...
متن کامل